2 Quantum structures and quantum logic
نویسنده
چکیده
We present an analysis of quantum mechanics and its problems and paradoxes taking into account the results that have been obtained during the last two decades by investigations in the field of ‘quantum structures research’. We concentrate mostly on the results of our group FUND at Brussels Free University. By means of a spin 1 2 model where the quantum probability is generated by the presence of fluctuations on the interactions between measuring apparatus and physical system, we show that the quantum structure can find its origin in the presence of these fluctuations. This appraoch, that we have called the ‘hidden measurement approach’, makes it possible to construct systems that are in between quantum and classical. We show that two of the traditional axioms of quantum axiomatics are not satisfied for these ‘in between quantum and classical’ situations, and how this structural shortcoming of standard quantum mechanics is at the origin of most of the quantum paradoxes. We show that in this approach the EPR paradox identifies a genuine incompleteness of standard quantum mechanics, however not an incompleteness that means the lacking of hidden variables, but an incompleteness pointing at the impossibility for standard quantum mechanics to describe separated quantum systems. We indicate in which way, by redefining the meaning of density states, standard quantum mechanics can be completed. We put forward in which way the axiomatic approach to quantum mechanics can be compared to the traditional axiomatic approach to relativity theory, and how this might lead to studying another road to unification of both theories. ∗Published as: Aerts, D., 1999, “Quantum Mechanics; Structures, Axioms and Paradoxes”, in Quantum Structures and the Nature of Reality: the Indigo book of the Einstein meets Magritte series, eds. Aerts, D. and Pykacz, J., Kluwer Academic, Dordrecht.
منابع مشابه
Novel Defect Terminolgy Beside Evaluation And Design Fault Tolerant Logic Gates In Quantum-Dot Cellular Automata
Quantum dot Cellular Automata (QCA) is one of the important nano-level technologies for implementation of both combinational and sequential systems. QCA have the potential to achieve low power dissipation and operate high speed at THZ frequencies. However large probability of occurrence fabrication defects in QCA, is a fundamental challenge to use this emerging technology. Because of these vari...
متن کاملEfficient Genetic Based Methods for Optimizing the Reversible and Quantum Logic Circuits
Various synthesis methods have been proposed in the literature for reversible and quantum logic circuits. However, there are few algorithms to optimize an existing circuit with multiple constraints simultaneously. In this paper, some heuristics in genetic algorithms (GA) to optimize a given circuit in terms of quantum cost, number of gates, location of garbage outputs, and delay, are proposed. ...
متن کاملEfficient Genetic Based Methods for Optimizing the Reversible and Quantum Logic Circuits
Various synthesis methods have been proposed in the literature for reversible and quantum logic circuits. However, there are few algorithms to optimize an existing circuit with multiple constraints simultaneously. In this paper, some heuristics in genetic algorithms (GA) to optimize a given circuit in terms of quantum cost, number of gates, location of garbage outputs, and delay, are proposed. ...
متن کاملOptimization of Quantum Cellular Automata Circuits by Genetic Algorithm
Quantum cellular automata (QCA) enables performing arithmetic and logic operations at the molecular scale. This nanotechnology promises high device density, low power consumption and high computational power. Unlike the CMOS technology where the ON and OFF states of the transistors represent binary information, in QCA, data is represented by the charge configuration. The primary and basic devic...
متن کاملSILAR Sensitization as an Effective Method for Making Efficient Quantum Dot Sensitized Solar Cells
CdSe quantum dots were in situ deposited on various structures of TiO2 photoanode by successive ionic layer adsorption and reaction (SILAR). Various sensitized TiO2 structures were integrated as a photoanode in order to make quantum dot sensitized solar cells. High power conversion efficiency was obtained; 2.89 % (Voc=524 mV, Jsc=9.78 mA/cm2, FF=0.56) for the cells that sensitized by SILAR meth...
متن کاملIntroducing New Structures for D-Type Latch and Flip-Flop in Quantum-Dot Cellular Automata Technology and its Use in Phase-Frequency Detector, Frequency Divider and Counter Circuits
Quantum-dot cellular automata (QCA) technology is an alternative to overcoming the constraints of CMOS technology. In this paper, a new structure for D-type latch is presented in QCA technology with set and reset terminals. The proposed structure, despite having the set and reset terminals, has only 35 quantum cells, a delay equal to half a cycle of clocks and an occupied area of 39204 nm2. T...
متن کامل